PSDTech PQM communication driver

 

PSDTech PQM communication driver is the driver to communicate with Power Meter controller of PsdTech Co., Ltd. in Korea.

 

1. Read settings

 

<Figure 1> is read setting example of PSDTech PQM communication driver.

<Figure 1> Read setting example of PSDTech PQM communication driver

Device part of  <Figure 1> input Com Port(COM1), Baud Rate(9600), Parity Bit(0), Data Bit(8), Stop Bit(1) respectively according to setting of controller.

Also you can set 'weather to calculate and save the readed data to Float'( 0 = don't calculate, 1 = calculate, default : 0) by using option part.

Station number and baud rate, ... can set by write setting or button of front panel.

 

PDTech PQM communication driver¡¯s read schedule

Read schedule setting parameters are as follows:

1) STATION – 0 ~ 255 station number of PQM controller.

2) Read command – command = DATA, VHD, SET, SAG. ( refer to <Table 1> ~ <Table 6> )

 DATA – read of measurement data,

VHD – read of VHD measurement data,

SET – read of setting value,

SAG – read of Sag, Swell data. 

3) Read start address – don't care.

4) Save Start Address for Communication Server – readed data saving start address of communication server.

5) Read Size – fixed to according to read command.

 

Read schedule example)

DWORD,    1,   DATA,     0,    0,   1,

DWORD,    1,    SET,     0,  150,   1,

 

Note) Station address of PQM controller can set by 'Analog write.

 

<Table 1> is data saving address and contents for DATA read command.

Data saving address

Contents

Remarks

Start addr + 0 ~ 5

 voltage of R phase, index

 voltage of S phase, index

 voltage of T phase, index

E,

index : default index

refer to <Table 2>

Start addr + 6 ~ 7

 average voltage( E ) of 3 phase, index

E

Start addr + 8 ~ 13

voltage R-S phase, index

 voltage S-T phase, index

 voltage T-R phase, index

V

Start addr + 14 ~ 15

average voltage( V ) of 3 phase, index

V

Start addr + 16 ~ 25

 current of R phase, index

 current of S phase, index

 current of T phase, index

 current of N phase, index

 current of 3 phase average, index

A

Start addr + 26 ~ 33

 active power of R phase, index

 active power of S phase, index

 active power of T phase, index

 active power of 3 phase, index

W

Start addr + 34 ~ 41

apparent power of R phase, index

apparent power of S phase, index

apparent power of T phase, index

apparent power of 3 phase, index

VA

Start addr + 42 ~ 49

fundamental wave reactive power of R phase, index

fundamental wave reactive power of S phase, index

fundamental wave reactive power of T phase, index

fundamental wave reactive power of 3 phase, index

VAr

Start addr + 50 ~ 57

reactive power of R phase, index

reactive power of S phase, index

reactive power of T phase, index

reactive power of 3 phase, index

VAr

Start addr + 58 ~ 61

PEAK, index

DEMAND, index

W

Start addr + 62 ~ 71

 K-factor of R phase, index

 K-factor of S phase, index

 K-factor of T phase, index

 K-factor of N phase, index

 K-factor of 3 phase, index

 

Start addr + 72 ~ 73

distortion power of 3 phase, index

 

Start addr + 74 ~ 75

 emergency generator capacity of 3 phase, index

Gh

Start addr + 76 ~ 77

transformer single-phase load, index

THDF-1¥õ

Start addr + 78 ~ 85

transformer 3phase load of R phase, index

transformer 3phase load of S phase, index

transformer 3phase load of T phase, index

transformer 3phase load of 3 phase, index

THDF-1¥õ

Start addr + 86 ~ 93

 fower factor of R phase, index

 fower factor of S phase, index

 fower factor of T phase, index

 fower factor of 3 phase, index

PF

Start addr + 94 ~ 101

 fundamental wave fower factor of R phase

 fundamental wave fower factor of S phase

 fundamental wave fower factor of T phase

 fundamental wave fower factor of 3 phase

COS

Start addr + 102 ~ 109

voltage unblanced factor of R phase, index

voltage unblanced factor of S phase, index

voltage unblanced factor of T phase, index

voltage unblanced factor of 3 phase, index

%

Start addr + 110 ~ 117

current unblanced factor of R phase, index

current unblanced factor of S phase, index

current unblanced factor of T phase, index

current unblanced factor of 3 phase, index

%

Start addr + 118 ~ 119

HZ, index

 

Start addr + 120 ~ 123

TR temperature, index

PANNEL temperature, index

¡É

Start addr + 124 ~ 117

3phase amount of active power( KWh ), index

3phase amount of reactive power( KvArh ), index

index : refer to <Table 3>

Start addr + 128

alarm status

bit 0 : TRT

bit 1 : MCSGT

bit 2 : PEAK

bit 3 : VTHD

bit 4 : OCR

bit 5 : UNB

bit 6 : PF

bit 7 : V.CUR

Start addr + 129

INPUT status

bit 0 : Â÷´Ü±â

bit 1 : OCR

bit 2 : OCGR

bit 3 : ELD

Start addr + 130 ~ 134

year, month, day, hour, minute

each 2digit data

(0 ~ 99 year)

<Table 1> Data saving address and contents for DATA read command

<Table 2>, <Table 3> are unit and decimal point for default, amount of active power Index.

Index

Unit

Decimal point

0

m(mili)

2

1

1

2

(unit)

3

3

2

4(0)

1

5

K(Kilo)

3

6

2

7

1

8

M(Mega)

3

9

2

10

1

<Table 2> Unit and decimal point for default Index ( include PT, CT ratio )

Index

Unit

Decimal point

0

KWH(KVARH)

3

1

2

2

1

3

0

<Table 3> Unit and decimal point for amount of active power Index

<Table 4> ~ <Table 6> are data saving address and contents for VHD, SET, SAG read command.

Data saving address

Contents

Remarks

Start addr + 0 ~ 51

 V-1 harmonic( V ) of R phase, index

 V-3 harmonic( % ) of R phase, index

¡¦

 V-21 harmonic( % ) of R phase, index

26 harmonic data
for each harmonic
Start addr + 52 ~ 103

 V-1 harmonic( V ) of S phase, index

 V-3 harmonic( % ) of S phase, index

¡¦

 V-21 harmonic( % ) of S phase, index

Start addr + 104 ~ 155

 V-1 harmonic( V ) of T phase, index

 V-3 harmonic( % ) of T phase, index

¡¦

 V-21 harmonic( % ) of T phase, index

Start addr + 156 ~ 207

A-1 harmonic( A ) of R phase, index

A-3 harmonic( % ) of R phase, index

¡¦

A-21 harmonic( % ) of R phase, index

Start addr + 208 ~ 259

A-1 harmonic( A ) of S phase, index

A-3 harmonic( % ) of S phase, index

¡¦

A-21 harmonic( % ) of S phase, index

Start addr + 260 ~ 311

A-1 harmonic( A ) of T phase, index

A-3 harmonic( % ) of T phase, index

¡¦

A-21 harmonic( % ) of T phase, index

Start addr + 312 ~ 363

A-1 harmonic( A ) of N phase, index

A-3 harmonic( % ) of N phase, index

¡¦

A-21 harmonic( % ) of N phase, index

Start addr + 364 ~ 371

V ( THD ) % of R phase, index

V ( THD ) % of S phase, index

V ( THD ) % of T phase, index

V ( THD ) average % of 3 phase, index

 
Start addr + 372 ~ 381

A ( THD ) % of R phase, index

A ( THD ) % of S phase, index

A ( THD ) % of T phase, index

A ( THD ) % of N phase, index

A ( THD ) % of 3 phase average, index

 
Start addr + 382 ~ 391

 ITDD of R phase, index

 ITDD of S phase, index

 ITDD of T phase, index

 ITDD of N phase, index

 ITDD of 3 phase average, index

 
<Table 4> Data saving address and contents for VHD read command

 

Data saving address

Contents

Remarks

Start addr + 0 ~ 3

PT 1 value, index

PT 1 value, index

 

Start addr + 4 ~ 7

CT 1 value, index

CT 1 value, index

 

Start addr + 8

wiring method

1 : DA - 3P3W

2 : 3P4W

3 : 1P2W

4 : 1P3W

Start addr + 9 ~ 13

year, month, day, hour, minute of current time

 

Start addr + 14 ~ 15

TR temperature, PANEL temperature

 

Start addr + 16

voltage THD

 

Start addr + 17 ~ 18

over current, index

 

Start addr + 19

unblanced factor

 

Start addr + 20 ~ 21

neutral current, index

 

Start addr + 22 ~ 23

PEAK, index

 

Start addr + 24 ~ 25

DEMAND, index

 

Start addr + 26

power factor

 

Start addr + 27

type of transformer

1 - Dry 1MVA below

2 - Dry 1MVA excess

3 - Oil-Filled 2.5MVA below

4 - Oil-Filled 2.5MVA excess

       5MVA below

5 - Oil-Filled 5MVA excess

<Table 5> Data saving address and contents for SET read command
Data saving address

Contents

Remarks

Start addr + 0

item of R phase

0 : normal, ( Sag, Swell not occured )

1 : Sag (voltage RMS = 0.5 cycle¡­1 minute under, 10¡­90% decrease)

2 : Undervoltage (voltage RMS = 1minute over, 10¡­90% decrease)

3 : Interruption (voltage RMS = 0.5 cycle¡­1 minute under,  10% under decrease)

4 : Swell (voltage RMS = 0.5 cycle¡­1 minute under, 110% over increase)

5 : Overvoltage (voltage RMS = 1 minute over, 110% over increase)

Start addr + 1 ~ 6

occurrence year, month, day, hour, minute, second of R phase

 

Start addr + 7

cycle or minute for R phase

 '1'[Sag], '3'[Interruption], '4'[Swell] : cycle

 ¡®2¡¯[Undervoltage], '5'[Overvoltage] : minute

Start addr + 8 ~ 9

 voltage RMS % value of R phase, index

 

Start addr + 10

item of S phase

same as R phase

Start addr + 11 ~ 16

occurrence year, month, day, hour, minute, second of S phase

 

Start addr + 17

cycle or minute for S phase

same as R phase

Start addr + 18 ~ 19

 voltage RMS % value of S phase, index

 

Start addr + 20

item of T phase

same as R phase

Start addr + 21 ~ 26

occurrence year, month, day, hour, minute, second of T phase

 

Start addr + 27

cycle or minute for T phase

same as R phase

Start addr + 28 ~ 29

 voltage RMS % value of T phase, index

 

<Table 6> Data saving address and contents for SAG read command

Note) All index value of <Table 1>, <Table 4>, <Table 5>, <Table 6> use the value of <Table 2> except active power Index.

 

PSDTech PQM communication driver store the same data in WORD, DWORD, FLOAT( when using 'weather to calculate and save the readed data to Float' option ) memory, but the data format are different.

If you click the icon  in protocol option part, you can see the dialog box such as <Figure 2>. you can also set read schedule by using this part. 

<Figure 2> Example of PSDTech PQM communication driver¡¯s Option dialog box

You can set read schedule by using , , button and listbox of <Figure 2>. 

Also, you can set weather to calculate and save the readed data to Float by using the part of ¡®Unit Calculation' shown in <Figure 2>.

<Figure 3> Example of PSDTech PQM communication driver¡¯s read schedule Add/Edit dialog box

When you click Add button or Edit button in dialog box of <Figure 2>, dialog box of <Figure 3> is shown.

 

2. Write settings

You can control PQM controller by using write settings.

 

Digital Write

Digital write setting parameters are as follows:

1)  PORT                   Port no. (0 ~ 255)

2)  STATION             0 ~ 255 station number of PQM controller.

3)  ADDRESS           type selection of PC, CT ration when PC, TC write command.

0 = PT 1, CT 1 ratio setting,

1 = PT 1, CT 1 index setting,

2 = PT 2, CT 2 ratio setting,

3 = PT 2, CT 2 index setting.

4) Extra1                    write command = PT, CT, TIME, ID, RESET, MODE, TRANS, ...

 PT, CT : PT, CT ratio/ index setting,

TIME : time syncronization with computer,

ID : station ID number setting of PQM controller,

RESET : clear command for 3 phase amount of active power( Kwh ), 3 phase amount of reactive power( Kvarh ) Clear,

( output value - 1 = 3 phase amount of active power clear,   2 = 3 phase amount of active power clear clear )

MODE : setting of wiring method, ( output value  - 1= DA - 3P3W,   2 = 3P4W,   3 = 1P2W,   4 = 1P3W )

TRANS : selection of transformer type.

( output value - 1 = Dry 1MVA below,   2 = Dry 1MVA excess,   3 = Oil-Filled 2.5MVA below,   4 = Oil-Filled 2.5MVA excess 5MVA below,   5 = Oil-Filled 5MVA excess )

5) Extra2                    don't care.

 

Write example 1)

PORT:0,  station:1, ADDRESS:0000, Extra1: TIME,  Extra2 :

The setting parameter shown above is time syncronization example with computer for 1 station number PQM  controller.

 

Analog Write

Analog write and digital write have the same setting parameters except output value.

 

Write example 1)

PORT:0,  station:2, ADDRESS:0000, Extra1: TIME,  Extra2 :

The setting parameter shown above is time syncronization example with computer for 2 station number PQM  controller.

 

Write example 2)

PORT:0,  station:1, ADDRESS:0000, Extra1: PT,  Extra2 :

The setting parameter shown above is PT 1 ratio setting example for station number 1 PQM controller.

 

Write example 3)

PORT:0,  station:1, ADDRESS:0001, Extra1: PT,  Extra2 :

The setting parameter shown above is PT 1 index setting example for station number 1 PQM controller.

 

Write example 4)

PORT:0,  station:1, ADDRESS:0002, Extra1: PT,  Extra2 :

The setting parameter shown above is PT 2 ratio setting example for station number 1 PQM controller.

 

Write example 5)

PORT:0,  station:1, ADDRESS:0000, Extra1: CT,  Extra2 :

The setting parameter shown above is CT 1 ratio setting example for station number 1 PQM controller.

 

Write example 6)

PORT:0,  station:1, ADDRESS:0000, Extra1: RESET,  Extra2 :  , Output value = 1

The setting parameter shown above is 3 phase amount of active power clear ( to 0 ) setting example for station number 1 PQM controller.

 

Write example 7)

PORT:0,  station:1, ADDRESS:0000, Extra1: RESET,  Extra2 :  , Output value = 2

The setting parameter shown above is 3 phase amount of reactive power clear ( to 0 ) setting example for station number 1 PQM controller.

 

Write example 8)

PORT:0,  station:1, ADDRESS:0000, Extra1: MODE,  Extra2 : 

The setting parameter shown above is wiring method setting example for station number 1 PQM controller. ( output value = 1 ~ 4 )

 

Write example 9)

PORT:0,  station:1, ADDRESS:0000, Extra1: TRANS,  Extra2 : 

The setting parameter shown above is transformer type setting example for station number 1 PQM controller. ( output value = 1 ~ 5 )

 

Write example 10)

PORT:0,  station:1, ADDRESS:0000, Extra1: ID,  Extra2 : 

The setting parameter shown above is station ID number setting example for station number 1 PQM controller. ( output value = 0 ~ 2555 )

 

3. Connection of communication cable

Please connect RS-485 communication cable to +, - connector of PQM controller.

RS- 485 of computer                   RS-485 connector of PQM controller

Tx+, Rx+  --------------------------------- + ( 5th connector from above )

Tx-, Rx-  ---------------------------------- - ( 5th connector from above )

 

Note) Please use RS-485 communication converter supported by Tx, Rx flow control at hardware. ( It is recommended that you use the RS-485 converter of PSDTech )

 

<Figure 4> is connection example of communication cable to PQM controller.

<Figure 5> is appearance of PQM controller.

<Figure 6> is appearance of PQM display and setting controller.

<Figure 4> Connection example of communication cable to PQM controller
<Figure 5> Appearance of PQM controller

 

<Figure 6> Appearance of PQM display and setting controller